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Three-dimensional convection in a 
cubic box of fluid-saturated porous material 
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Calculations of finite amplitude convection in cubic boxes containing fluid-saturated 
porous material are reported for Rayleigh numbers R as large as 150. Steady two- or 
three-dimensional convection can always be forced by appropriate choice of initial 
conditions. Randomly chosen initial conditions will result in either two- or three- 
dimensional convection. Although there is a non-uniqueness associated with initial 
conditions which makes possible either two- or three-dimensional convection, the 
non-uniqueness is limited in the sense that only one two-dimensional or one three- 
dimensional solution appears to be realizable. Two-dimensional flows have larger 
Nusselt numbers than three-dimensional flows for R 5 97; the opposite is true for 
R 2 97. 

1. Introduction 
At present, we know relatively little about the nature of three-dimensional, finite 

amplitude thermal convection. Because of its intrinsic importance and its relevance to 
the general phenomenon, we have chosen to study such convection in cubic boxes of 
fluid-saturated porous material heated from below. According to linear theory, 
‘strictly’ three-dimensional convection in a cubic box is possible only for R > 4 . 5 7 ~ ~  
(Beck 1972). (For R as small as 47r2, there can exist a trivial form of three-dimensional 
convection, consisting of the superposition of orthogonal two-dimensional rolls. For 
R > 4.57~2, our calculations never produced this form of convection.) We consider 
Rayleigh numbers R which lie between the critical value of 4 . 5 7 ~ ~  and 150. For these 
values of R, we have shown that there is always a stable form of steady two-dimensional 
convection (Straus & Schubert 1978). Thus, if three-dimensional convection were to 
exist at all a t  these Rayleigh numbers, there would have to  be a non-uniqueness in 
the form of the convection pattern associated with initial conditions. That this is 
indeed the case is indicated by previous numerical studies. Holst & Aziz (1972) calcu- 
lated both steady two-dimensional and steady three-dimensional flows in cubic boxes 
at R = 60 and R = 120; Horne (1978) also found both two- and three-dimensional 
steady convection in cubic boxes a t  R = 75 and 100. 

Since stable, steady two-dimensional convection is always realizable, we have asked 
two questions concerning the existence of steady three-dimensional convection. Can 
steady three-dimensional convection always be realized by appropriate choice of 
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initial conditions ? For a random choice of initial conditions will convection prefer to 
be two- or three-dimensional? Our results indicate that i t  is always possible to  force 
either steady two-dimensional or steady three-dimensional convection by proper choice 
of initial conditions. We have also found that random initial conditions lead to either 
steady two-dimensional or steady three-dimensional convection. 

Because two- and three-dimensional convection are always achievable states, i t  is 
important to compare the heat transported by each of them. Holst & Aziz (1972) 
reported that the two-dimensional Nusselt number was larger than the three- 
dimensional one a t  R = 60, but the reverse was true a t  R = 120. Home (1978) 
also determined that the two-dimensional Nusselt number was larger than the 
three-dimensional one a t  R = 75, with the reverse true a t  R = 100. Our computa- 
tions, which give Nu accurate to 1 yo up to R = 150, show that the heat transport 
by three-dimensional convection exceeds that by two-dimensional convection 
for R 2 97, while for R 5 97 two-dimensional convection transports more heat. 
Zebib & Kassoy (1978) have used a two-term expansion of the temperature and 
velocity fields to demonstrate that  the two-dimensional value of Nu exceeds that 
for three-dimensional motion consisting of a superposition of orthogonal rolls when 
R is slightly supercritical. It has been proposed by Malkus (1954) and Platzman 
(1965) that  a flow will evolve to a steady configuration that maximizes the heat 
transport. There has been no rigorous demonstration of the validity of this proposal, 
and our results do not support i t  since we find that the system often chooses the 
state with the smaller Nusselt number when it is allowed to evolve from random 
initial conditions. 

I n  the sections to follow we first develop the equations required to describe time- 
dependent three-dimensional convection in a box of fluid-saturated porous material 
using the Galerkin technique, and we then discuss the numerical solutions of these 
equations for cubic boxes and Rayleigh numbers as large as 150. In  particular, we show 
details of the flow and temperature patterns for steady three-dimensional convection 
a t  R = 80 and 150, we compare Nuvs. R curves for two- and three-dimensional 
convection, and we discuss the dependence of the solutions on the choice of initial 
conditions. 

2. Mathematical formulation 

Consider a rectangular box of fluid-saturated permeable material heated from 
below. The bottom of the box is z = 0 and the top is z = d. The sides of the box are 
x = 0, x = I, y = 0 and y = b .  We develop the equations for a box with arbitrary 
dimensions although we shall present numerical results only for cubic boxes. The top 
and bottom of the box are isothermal impermeable surfaces. The sides of the box are 
insulating impermeable boundaries. The temperatures T of the top and bottom sup- 
faces are To and To + A T ,  respectively. 

The equations governing convection in the box are 

v.u = 0, (1 )  

(2) 

(3) 

V p  + pa(T - To - AT + ATz/d)  g + (,u/K) u = 0, 

x aT/at + PCU . V T  = kV2T, 
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where the Darcy velocity u is the volumetric flow rate of fluid per unit area of the 
porous medium, p is the pressure in excess of the hydrostatic value, p is the fluid 
density, a! is the thermd expmsivity of the fluid, g is the acceleration due to gravity, 
p is the viscosity of the fluid, K is the permeability of the porous medium, x is the 
average heat capacity per unit volume of the fluid and solid matrix, c is the specific 
heat of the fluid, and k is the average thermal conductivity of the fluid and solid matrix. 
The quantity To + AT - AT z/d in the buoyancy term of (2) is, of course, just the con- 
duction temperature profile. We have made the Boussinesq approximation and 
adopted Darcy’s law in writing these equations. The boundary conditions are 

T = T , + A T ,  w = O  on z = O ,  (4) 

T = To, uj = 0 on z = d,  ( 5 )  

aT/ax = 0, u = 0 on x = o,E, (6) 

aT/ay = 0,  v = 0 on y = O,b, ( 7 )  

where u, v and u’ are the x, y and z components of the Darcy velocity. 
We introduce the dimensionless quantities 

(8) 

T - To - AT +- ATz/d KPC 
AT Pk 

, n = - p ,  0 =  

in terms of which the equations and boundary conditions are 
- 
v.ii = 0, 

on+ii-R0< = 0 ,  

a q a 7  + ii . i%3 = w + Ps,  

A 

0 = w = o  on { = 0 , 1 ,  (14) 

aslag = u = 0 on ( = o , l / d ,  (15) 

a0laV = E = 0 on 7 = 0, b l d .  (16) 

R = &gp2KcdAT/pk. (17)  

A 
where < is the unit vector in the { direction and the Rayleigh number R is defined as 

By taking the curl of Darcy’s law, it can be seen that the vertical component of the 
vorticity is zero, i.e. 

This is identically satisfied if 
a q a t  - a q a V  = 0. (18) 

= &’ = &, (19) 

w = - & - App (20) 

where the subscripts indicate differentiation. Furthermore, with 
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we also satisfy the continuity equation. With the help of (19) and (20)) we can obtain 
two equations for the unknowns 8 and q5 from (12) and (13): 

- 
Vaq5 = -Re, (21) 

(22) 

8 = &+ q577 = &5 = 0 on 5 = 0,1, (23) 

O6 = q5ss = 0 on 5 = 0, l l d ,  (24) 

8 7 = q5,,[= 0 on g = 0, b l d .  (25) 

- 
a81a7 + eEq5tc+ ~ , q 5 ~ ~  - (+ct + +,,J 8, = v2e - +st - A,,,. 

The boundary conditions on 8 and q5 are 

A single equation for q5 can be derived from (21) and (22) 
- 

aVaq5/a7 i- q5pq5t + q57[vaq5,, - ($55 + $7,) %C = v4q5 + R(q5g i- 47,). (26) 

q5&+q5,,,, = 4[t: = 0 on 5 = 071, (27) 

The boundary conditions on q5 are 

q5tc = V2q& = 0 on 5 = 0, l l d ,  

q57c = V2q5, = 0 on g = 0, b l d .  
- 

Following Straus (1 974)) who investigated two-dimensional convection in a layer 
of fluid-saturated porous material, we use the Galerkin technique to determine q5 in 
this three-dimensional situation. The Fourier series expansion of q5 is 

jm5 m=r w w  m 

q5 = C C q 5 n j m ( ~ )  sinn7rgcos - cos- 
n = l  j=O m=O l l d  b l d '  

The boundary conditions (27)-(29) are identically satisfied by this form of the solution. 
Upon substituting (30) into (26) and using the orthogonality relations among the 
trigonometric functions, we obtain an infinite set of coupled, nonlinear, first-order 
ordinary differential equations for the q5nj,n(7). These equations are solved numerically 
by truncating the infinite set; we retain only those terms which satisfy the requirement 
n +j  + m < N ,  where N is a positive integer. 

To determine how large N has to be for the solution of the truncated system 
to represent accurately convection in the box, we determine the dependence of the 
Nusselt number on N .  The Nusselt number Nu,  which is the dimensionless ratio of 
the horizontally averaged upward heat flux q to that which would occur, in the 
absence of convection, by conduction alone, is given by 

We required that N be sufficiently large that N u  be accurate to within 1 yo. Figure 1 
shows how the calculated values of N u  for three-dimensional convection depend on N .  
For 4 . 5 7 ~ ~  < R < 100, N = 8 is adequate to satisfy this criterion, whereas for 
100 < R < 150, N = 10 is necessary. Many more terms are required to compute N u  to 
a given accuracy for three-dimensional convection as compared with two-dimensional 
convection. Straus ( 1  974) found that N = 6 was adequate to give Nu accurate to 1 % 
for two-dimensional flows with R as large as 150. 
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R 
FIGURE 1. Nusselt number Nu vs. Rayleigh number R for two-dimensional (dashed curve) and 

three-dimensional (solid curves) convection in a cubic box of fluid-saturated porous material. 

The complexity of the three-dimensional flows can be appreciated by noting that 
there are 56,120 and 220 apriori non-zero coefficients with N = 6,8 and 10 respectively, 
whereas the corresponding numbers of terms in two dimensions are 21, 36 and 55. In  
two dimensions, symmetry restricts the non-zero coefficients to those which have n +j 
even (for unicellular flow), thus reducing the numbers of terms to 12, 20 and 30. In  the 
next section, we shall see that steady-state three-dimensional convection in the range 
of Rayleigh numbers studied actually involves fewer non-zero coefficients than 
mentioned above. 

3. Discussion of results 
I n  order to investigate whether the ‘dimensionality’ of the convective flow in a 

cubic box of fluid-saturated porous material is completely determined by the Rayleigh 
number, or by the initial conditions, or by a combination of the two, the following 
numerical experiment was carried out. For a given value of R, the initial values of the 
coefficients were chosen randomly in the range (0,O.Ol). Two different sets of 
random initial values were used. In  every case, a steady-state solution was reached, 
and both two- and three-dimensional solutions could be obtained a t  every value of R 
in the range studied. 

One of the sets of random initial values led to two-dimensional convection a t  
Rayleigh numbers of 60, 70, 76, 82, 84, 90, 100 and 150 and three-dimensional con- 
vection a t  R = 77, 78, 80 and 81. The other set of initial values led to two-dimensional 
motion at R = 60 and 120 and three-dimensional flow a t  R = 70, 76, 80, 90, 100 and 
110. Thus a given set of random initial conditions can give either two- or three-dimen- 
sional convection, depending on R. Accordingly, there appears to be no way to deter- 
mine, from the characteristics of the random initial conditions alone, whether two- or 
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three-dimensional convection will result at a particular value of R. On the other hand, 
i t  is possible to force a specific type of convection by emphasizing a particular mode 
(e.g. q5111 or q5202) in the initial conditions. 

One additional numerical experiment was carried out at R = 120. The initial 
values of one of the sets of modal coefficients were redistributed over the interval 
( -  0.01, 0.01) according to q5njm --f %jhnirn- 0.01. Whereas the original set of initial 
conditions led to  two-dimensional flow, the transformed set yielded three-dimen- 
sional motion. 

I n  summary, then, a t  a given value of R, initial conditions determine whether the 
flow is two- or three-dimensional. There is no further non-uniqueness in the flow. At a 
given value of R, all two-dimensional flows were identical; the same can be said of the 
three-dimensional solutions. 

Figure 1 shows the dependence of Nu on R for the two- and three-dimensional 
solutions. Two-dimensional convection transports more heat than does three-dimen- 
sional convection for Rayleigh numbers less than about 97; the reverse is true for 
R 2 97. Thus, even though two-dimensional flows have a higher Nusselt number at 
R 5 97, three-dimensional convection is a possible steady state when the flows evolve 
from random initial conditions. Similarly, for 97 5 R 150, two-dimensional con- 
vection is a possible final configuration for a system evolving from random initial 
states even though the two-dimensional states transport less heat. It would be inter- 
esting to determine if there is a value of R above which the flow would evolve only to 
the three-dimensional configuration. Our previous calculations (Straus & Schubert 
1978) suggest that  two-dimensional convection in a cubic box would be stable a t  least 
UP to  R = 400. 

Figures 2-4 illustrate different aspects of the three-dimensional convection patterns 
a t  R = 80 and 150. Figure 2 shows isotherms of the dimensionless temperature per- 
turbation B on the horizontal planes 6 = 0-25,0-50 and 0.75. Figure 3 shows contours of 
constant horizontal velocity potential q5c on the horizontal planes 5 = 0, 0.25, 0.75 and 
1.0. Dimensionless velocity vectors on three faces of the box are shown in a perspective 
view in figure 4. All the figures include the fundamental three-dimensional mode 
n = j = m = 1 for comparison. Details regarding contour intervals, etc., are given in 
the figure captions. 

Referring first to the R = 80 isotherms in figure 2, we see that the corners of the 
plane y = 0.25 are hot and cold centres. The hot (cold) spots are a t  diagonally opposite 
corners. The relatively hot fluid occupies a much smaller fraction of this plane than 
does the cold fluid. One can imagine narrow hot ‘plumes’ of rising fluid and much 
broader regions of descending cold fluid crossing this plane. By contrast, the isotherms 
of the n = j = m = 1 mode in this plane show no hot-cold asymmetry, while the hot 
corners at R = 150 occupy even smaller areas of the plane than they do at R = 80. In 
the midplane, 5 = 0.5, the isotherms of the n = j = m = 1 mode and of the flow a t  
R = 80 and 150 are basically similar; hot and cold areas of the midplane are sym- 
metric. The isotherms on the plane 6 = 0-75 are like those on the plane 5 = 0.25 with 
hot and cold regions reversed. The hot corners now occupy the greater area of the plane; 
i.e. hot plumes have broadened during their ascent. Nearly isothermal core regions 
elongated parallel to  the diagonals of the horizontal planes 5 = 0-25 and 0.75 are 
apparent a t  R = 80 and 150; the isothermal cores are larger a t  R = 150 than at R = 80. 
Isotherms in the horizontal planes are symmetric about diagonals and display a sym- 
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FIGURE 2. Isotherms of the dimensionless temperature perturbation 0 on horizontal planes for 
three-dimensional convection at  R = 80 and 150 and for a simple three-dimensional flow consisting 
of only the n = j = m = 1 term. At R = 80, the contour intervals are 0.05. At R = 150, the contour 
intervals on 5 = 0.25 and 0.75 are 0.06 but are 0.05 on the midplane 5 = 0.5. Hot isotherms are 
shown solid, cold ones aredashed. The 0 = 0 contours are dotted. For then = j = m = 1 mode only 
the shapes of the isotherms are significant, i.e. the contour interval is arbitrary. 

metry relative to the midplane. The cold fluid not only occupies a much larger area of 
the plane 6 = 0.25 than does the hot fluid, but the extremes of temperature are larger 
in the cold regions of the plane 5 = 0.25. A similar observation can be made for the hot 
areas of the plane 5 = 0.75. 

The horizontal velocity potential g5c contours shown in figure 3 describe the flow in 
horizontal planes. Since the horizontal velocity is the gradient of &., the horizontal 
velocities are orthogonal to the contours in the figure. The sense of the flow is from low 
to high values of &. The horizontal flow in the bottom plane, 5 = 0, is outward from 
the cold corners and inward into the hot corners. In  the top plane, 5 = 1.0, the hori- 
zontal flow is reversed; it is outward from the hot corners and inward into the cold 
corners. This can also be seen in the perspective views of the velocity vectors in the 
plane 5 = 1.0 in figure 4. The horizontal velocities in the horizontal planes are sym- 
metric with respect to the diagonals and also exhibit a symmetry with respect to the 
midplane. The variations in contour spacing indicate where the horizontal motions are 
relatively fast and slow. This can also be seen by the lengths of the velocity vectors in 
the top plane of figure 4, although one must be careful to account for the foreshortening 
in this perspective view. I n  the bottom plane of figure 3, one can see that the areal 
extent of the outflow from the cold corners is equal to that of the inflow to the hot 
corners for the n = j = m = 1 mode. The inflow or outflow associated with each corner 
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R = 80 R = 150 
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FIGURE 3. Contours of constant horizontal velocity potential $r on the horizontal planes 5 = 0, 
0.25, 0.75, 1.0 for R = 80 and 150 and for the n = j  = m = 1 mode. For R = 80, the contour 
interval is 0.3 on the planes 5 = 0.25 and 0.75 and 0.6 on the planes 5 = 0 and 1. For R = 150, the 
contour interval is 0.6 on the planes 5 = 0.25, 0.75 and 2.0 on the planes C = 0 and 1. Positive $c 
contours are shown solid and negative contours are dashed. The $r = 0 contours are dotted. For 
the n = j = m = 1 mode, the contour intervals are arbitrary. 

occupies a quarter of the area of the horizontal plane. At the high Rayleigh numbers 
however, the areal extent of the outflow from the cold corners exceeds that of the 
inflow to the hot corners, an effect which is more pronounced a t  R = 150 than at 
R = 80. This agrees qualitatively with what we deduced about the areal extent of hot 
and cold regions from the isotherm plot of figure 2. From figures 3 and 4, it can be seen 
that the diagonally elongated isothermal areas of the horizontal planes are associated 
with relatively low horizontal velocities. 

The perspective view of the dimensionless velocity vectors on the three faces of the 
cubic box shown in figure 4 gives the most direct picture of the convection. The 
horizontal flow in the top plane can be seen moving outwards from above the hot 
upwelling plumes and inwards into the cold descending flow. The reduction in 
horizontal velocity along the diagonal connecting the cold corners in this plane as R is 
increased is apparent. As can be seen by the flow in the vertical faces of figure 4, 
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FI~URE A perspective view of the dimensionless velocity vectors on three faces of the cubic box 
at  R = 80 and 150 and for the n = j = m = 1 mode. The vector gives the velocity a t  the location 
of its tail. The length of each vector is proportional to the velocity, and the vectors are fore- 
shortened according to the perspective. In the front face, the longest vector corresponds to a 
dimensionless velocity of 17 for R = 80 and 35 for R = 150. 

upwelling and downwelling are symmetric for the $111 mode. However, at R = 80 and 
150, the ascending flow is wider above the midplane, while the descending flow is 
wider below the midplane. 

Table 1 gives the largest coefficients $nim for the steady three-dimensional flows 
which we obtained a t  R = 80,120 and 150 with N = 10. Convection a t  these Rayleigh 
numbers is dominated by the fundamental three-dimensional mode n = j = m = 1. 
The nonlinear interaction of this mode with itself produces the next largest (in absolute 
value) mode $200 and the other significant modes $222, $202 and $220. The third most 
important mode $311 results from the nonlinear interactions of $111 with all of the 
n = 2 modes. 

Many of the coefficients not listed in table 1 are identically zero; in addition, several 
of the non-zero coefficients are equal. These properties can be understood in the 
following way. The steady-state equations and boundary conditions are invariant to 
an interchange of f: and 7, leading to $njm = $nmi. (In a rectangular, rather than cubic, 
box this invariance would no longer exist.) We have seen in the previous discussion 
that 8 (or $) is symmetric about diagonals of horizontal planes; this requires that 
j+m be even. We have also seen that 8 (or 9) is antisymmetric with respect to a 
reflexion about the midplane 5 = + and a rotation of 90" about the line f: = 7 = 4; this 
requires that n+m and n + j  be even also. These symmetries reduce the number of 

6-2 
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R = 80 R = 120 R = 150 

$200 -2.618 x 10-1 -5.788 x lo-' - 8.209 x lo-' 
$400 - 1.080 x lo-' - 3.7€8 x lo-' - 6.345 x lo-' 

$800 - 6.791 x lo-' - 5.662 x 
- 7.556 x - 4 . 0 1 9 ~  - 7.774 x 10-3 $600 

- 1.314 x 
$202 = $220 - 3.077 x lo-' -5.513 x lo-' - 7.385 x lo-' 
$402 = $420 - 3.291 x - 6.368 x - 6.825 x 
$602 = $620 - 3.529 x - 1.206 x 1 0 - 3  - 1.984 x 
$204 = $240 - 1.813 x - 1-441 x - 2.186 x lop3 
$111 1.105 x 10" 1.798 x 100 2.228 x 10' 
$311 6.214 x lo-' 1.395 x 10-I- 1.887 x lo-' 
$511 4.983 x 1.705 x 2.696 x 

4.059 x $111 4.443 x 10-4 2.246 x 
$113 = $131 - 7.043 x - 1.241 x lo-' - 1.375 x lo-' 
$313 = $331 - 2.496 x - 8.844 x - 1.213 x lo-' 
$615 = $531 

$115 = $151 

- 1.175 x 10-4  - 1.140 x lop3 - 1.927 x 
- 4.295 x lo-' - 5 7 9 6  x - 1.138 x 10-3 

$222 2.193 x iO-2 7-705 x lop2 1.236 x lo-' 
$422 9.643 x 7.941 x lop3 1.446 x 
$622 - 3.517 x 9.465 x 2.641 x lo-' 

$424 = $442 - 5.075 x lo-' - 1.150 x - 2.782 x lo-' 
$133 2.156 x 8.844 x 2.628 x lo-' 
$333 4.538 x 4.840 x 1.032 x lo-' 
$244 1.088 x 1.689 x 4.531 x 

-5.778 x - 3.346 x - 6.134 x $224 = $242 

TABLE 1. Values of $njm such that > for R = 150, N = 10. 

non-zero coefficients from 220 to 55 (for N = 10) under steady-state conditions. There 
is no guarantee that these symmetries hold at arbitrarily large Rayleigh numbers. 

4. Concluding remarks 

We have found that t'hree-dimensional convection in a cubic box of porous material 
is an easily realizable state at relatively low Rayleigh numbers, even down to the 
critical value. The same may not be true for rectangular boxes, since the unequal 
horizontal dimensions may introduce a preferred orientation for two-dimensional flow. 

We have also observed that low Rayleigh number convection can be either two- or 
three-dimensional despite the fact that the three-dimensional flow transports less heat 
a t  R s 97. Thus the system does not act to maximize the heat transport, a t  least a t  low 
Rayleigh numbers. Rather, the final steady state a t  a given R is determined by initial 
conditions. This importance of initial conditions may reflect the fact that the two- 
and three-dimensional Nusselt numbers differ by a t  most 12 yo for R s 150. Perhaps 
a t  much higher Rayleigh numbers, where the three-dimensional heat transport greatly 
exceeds the two-dimensional one, three-dimensional convection will be preferred 
independent of initial conditions, 

In  view of the indeterminacy of the final steady-state configuration, it would be of 
interest to carry out a sufficient number of numerical experiments to determine whether 
it would be possible to characterize, from a probabilistic point of view, sets of random 
initial conditions which lead to a particular dimensionality of convection. Such an 
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investigation is beyond the scope of the present paper, but may constitute the subject 
of future research. 

The authors wish to acknowledge useful discussions with G. M. Homsy and R. N. 
Horne. D. R. Hickman generated the perspective views of the flow field. This work was 
supported by the National Science Foundation under grant number ENG-76-82119. 
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